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[1] The constellation of Global Positioning System (GPS) satellites provides a source of
continuous, phase-stable electromagnetic signals available for radio occultation
observations of our planet. The atmospheric-induced bending of the transmitted rays
observed during each occultation can be converted into a refractivity profile using an Abel
transform. Since refractivity is related to temperature and humidity, it may potentially be
used in global data assimilation for numerical weather prediction (NWP) and for creating
climate data sets. We first compare GPS/Meteorology (GPS/MET) 1995 refractivity with
various backgrounds and verify that the best expected background presents generally the
best fit with the observed refractivity. We implement here an efficient one-dimensional
variational (1DVAR) analysis of GPS refractivity that enables retrieving temperature,
humidity, and sea-level pressure using the finite volume data assimilation system
background. 1DVAR analyses with GPS/MET 1995 data are compared with collocated
radiosondes. They show an excellent capacity of the GPS measurements to resolve the
tropopause. In the Northern Hemisphere, we demonstrate a net reduction of temperature
bias and standard deviation, as compared with the background. The 1DVAR humidity
presents reduced standard deviation as compared to the background between 550 and 400
hPa. However, a refractivity bias between the observations and the background in the lower
troposphere systematically shifts the 1DVAR humidity downward. A refractivity bias over
the whole profile is transformed into a 1DVAR sea-level pressure bias. This study
represents a step toward using the GPS radio occultation data in data assimilation systems
to improve NWP forecasts and representation of Earth’s climate in models. INDEX TERMS:
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1. Introduction

[2] The Global Positioning System (GPS) system pro-
vides continuous radio signals for precise positioning in the
immediate vicinity of our planet. The atmosphere affects the
speed of propagation of these signals. These perturbations
in the GPS signals can in turn be used to remotely sense the

atmosphere. In particular, by placing a receiver in Low
Earth Orbit (LEO), for example, 500 to 2000 km altitude, it
is possible to perform soundings using the limb-viewing
radio occultation technique. Radio occultation has been
used for more than 30 years to study the atmospheres of
other planets [e.g., Fjeldbo et al., 1971; Lindal et al., 1979,
1981; Tyler et al., 1982; Lindal, 1992; Jenkins et al., 1994].
Gorbunov and Sokolovskiy [1993] provided simulations of
GPS radio occultation measurements. Kursinski et al.
[1997] also simulated many aspects of GPS measurements
and their expected error characteristics. GPS/Meteorology
(GPS/MET, 1995) was the first radio occultation experiment
conducted on Earth using radio occultation [e.g., Kursinski
et al., 1996; Ware et al., 1996; Rocken et al., 1997].
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[3] In this work, we have developed a one dimensional
variational (1DVAR) analysis of temperature, humidity and
sea-level pressure. In this approach, background informa-
tion is used to constrain the retrievals. The scheme
implemented here uses GPS refractivity, whereas Palmer
et al. [2000] used GPS bending angles. Healy and Eyre
[2000] developed a 1DVAR with GPS refractivity that
they used for a simulation study. Kursinski et al. [2000a]
also developed a 1DVAR and used it with GPS/MET
refractivity observations and a ECMWF background. They
discussed the latitude versus height differences created by
the 1DVAR analysis compared to the ECMWF back-
ground. Here we compare GPS/MET refractivity observa-
tions with various backgrounds from Data Assimilation
Office (DAO) Data Assimilation System (DAS) forecasts.
We retain the background with the best fit to GPS/MET
refractivity. We perform 1DVAR analyses with the finite-
volume DAO’s DAS background and GPS/MET refractiv-
ity observations, and compare the results with nearby
radiosondes.
[4] The outline of the paper is as follows: First we give

a brief description of the GPS radio occultation technique
and discuss the different possible approaches to retrieve
and assimilate atmospheric properties from GPS measure-
ments. Then, we describe the implementation of a 1DVAR
analysis of refractivity. We then compare GPS/MET
observed refractivity versus several backgrounds. After
selecting the background which presents the smallest
refractivity differences with the observations, we perform
1DVAR retrievals and compare them with nearby radio-
sondes. Finally, we attempt to interpret the 1DVAR anal-
yses in the light of the refractivity differences between the
background and the observations.

2. GPS Radio Occultation Technique

[5] This active remote sensing technique has already been
discussed in great detail by, for example, Kursinski et al.
[1997]. For the clarity of the work presented here, we
briefly review the basic principles and advantages of the

technique and the possible choices for assimilating the GPS
observations.

2.1. Observables Collected During a GPS Occultation

[6] Rays from a source (GPS occulted transmitter) tra-
verse the Earth’s atmospheric limb to reach the LEO
receiver. Since the two satellites are in relative motion, a
Doppler shift is introduced in the received signal. An
additional Doppler shift is introduced by the atmospheric
and ionospheric refraction. After removal of the phase
change due to the relative motion of the LEO with respect
to the GPS transmitter, proper calibration of receiver and
transmitter clocks, the extra phase change induced by the
atmosphere and the ionosphere can be isolated.
[7] The overall refraction effect can be summed up by a

total bending angle e and an asymptotic ray-miss distance p
(commonly called impact parameter) as shown in Figure 1.
The uniqueness of the definition of the impact parameter
assumes spherical symmetry, because in general the impact
parameters at the entry and at the exit of the atmosphere
are different. The vertical scanning of the atmosphere is
provided by the relative motion between the two orbiting
satellites. Time dependency of both e and p can be derived
from accurate measurements of Doppler-shifted frequency
and precise knowledge of the time-dependent orbital
geometry.
[8] A direct way to obtain the atmospheric refractive

index profile n from e and p is to use Abelian transformation
assuming local spherical symmetry, i.e.:

nðxÞ ¼ exp
1

p

Z 1

x

eðpÞ p2 � x2
� ��1

2dp

� �
; ð1Þ

where x = rn [e.g., Fjeldbo et al., 1971].
[9] Errors in computing n by this approach were sum-

marized by Kursinski et al. [1997]. They include contribu-
tions from (1) local spherical asymmetry [Ahmad and Tyler,
1999], (2) noncoplanar rays, (3) nonvertical scanning
(because both satellites drift during an occultation [Eyre,
1994]) and (4) an inaccurate upper boundary used to initiate

Figure 1. Geometry of a GPS occultation under the hypothesis of spherical symmetry of the
atmosphere.
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the integral [Steiner et al., 1999]. The integral formulation
of the Abel transform spreads the errors in this boundary
condition along the vertical.
[10] For microwave frequencies, after removal of the

ionospheric contribution via the use of the two frequen-
cies used by GPS for position determination [Vorob’ev
and Krasil’nikova, 1994], the refractivity N (defined by
N = 106 (n � 1)) of the atmosphere can be expressed by:

N ¼ b1
P

T
þ b2

Pw

T2
; ð2Þ

[e.g., Smith and Weintraub, 1953] where P is the pressure
of air (dry air and water vapor) in hPa, T the temperature
in K, Pw the partial pressure in water vapor in hPa, b1 =
77.6 N-unit�K�hPa�1, and b2 = 3.73 � 105 N-uni-
t�K2�hPa�1.
[11] Refractivity profiles can be inverted into atmospheric

temperature profiles, but this requires either using ancillary
data (background or initial guess) or assuming that the
contribution from the second term (sometimes referred to as
‘‘wet term’’) in equation (2) is negligible. In general,
temperature (humidity) profiles can be retrieved provided
humidity (temperature) data are available [Kursinski et al.,
1995].

2.2. Features of the GPS Radio Occultation Technique

[12] There are several interesting attributes of GPS
occultations as an atmospheric sounding device. A high-
inclination LEO receiver provides a set of observations
that covers the globe fairly uniformly at a relatively low
cost [Yunck et al., 1988]. The homogeneity of the GPS
coverage is advantageous for providing global observa-
tions in comparison to balloon-launched radiosondes
(about 800 each 12 hours, the majority of which are over
the Northern Hemisphere continents). A single GPS
receiver can obtain approximately 500 occultations per
day [Kursinski et al., 1997]. This number assumes the
GPS receiver can track both rising and setting occultations.
It is less than the number of profiles obtained by a sounder
on-board a meteorological polar-orbiting satellite. In order
to collect more occultations per day, one must place more
receivers into orbit, which is feasible because the receivers
are simple and small.
[13] When compared within infra-red (IR) spaceborne

sounders, the radio occultation (RO) technique with GPS
has the advantage of being an ‘‘all-weather’’ system. Like
microwave and unlike IR sounders, it is scarcely sensitive to
aerosols and clouds. In addition, it is also insensitive to rain
due to wavelengths of order 20 cm. Unlike most other
techniques the GPS radio occultation provides a degree of
self-calibration, because relative phase shifts are the rele-
vant information. Moreover, the stability of the transmitter
and receiver clocks limits temporal drifts.
[14] Finally, due to its limb-viewing geometry, the GPS

RO has a higher vertical resolution (0.2–1.5 km) than
passive nadir sounders [Kursinski et al., 1997]. This vertical
resolution is limited by Fresnel diffraction and is more
comparable to radiosondes. Furthermore, the ratio between
vertical and horizontal resolution (about 300 km) is con-
sistent with that of quasi-geostrophic flows [Lindzen and
Fox-Rabinovitz, 1989; Kursinski et al., 1997].

2.3. Strategies for Data Assimilation

[15] There are several types of GPS RO data available for
data assimilation [Kuo et al., 2000]. Commonly, three have
been considered so far: (1) bending angles [Healy, 1998;
Palmer, 1998; Matsumura et al., 1999; Palmer et al., 2000;
Zou et al., 2000], (2) refractivity [Zou et al., 1995;Healy and
Eyre, 2000], and (3) retrieved profiles of temperature or
water vapor [Eyre, 1994]. To be assimilated, each level
requires an estimate of the errors and an observation operator
along with its tangent linear model or adjoint [Eyre et al.,
1993]. The observation operator converts model state vari-
ables (i.e., temperature, humidity, pressure) into observed
GPS data such as bending angles or refractivity.
[16] Briefly, bending angles have the simplest error cor-

relations, but also have the most complicated and expensive
observation operator. Conversely, retrieved temperature or
humidity profiles have the simplest observation operator,
but the most complicated error covariances. Assimilating
refractivity represents a good alternative with a relatively
low computing cost. A more extensive discussion of the
various possibilities for assimilation of GPS data can be
found in the work of Kuo et al. [2000].
[17] The approach chosen here is to retrieve both tem-

perature and humidity in a one-dimensional (1D, in a
vertical column) analysis based on a numerical weather
prediction (NWP)model forecast background and refractivity
measurements.

3. GPS-1DVAR Implementation

[18] We now describe the one-dimensional variational
(1DVAR) analysis scheme and its components in detail.

3.1. Variational Theory

[19] The application of variational analysis to the retrieval
of geophysical parameters has been discussed extensively
by several authors [e.g., Rodgers, 1976; Eyre et al., 1993].
We minimize a cost function J with respect to a state of
atmosphere x (state vector). This function is

J ½x� ¼ ðhðxÞ � y0ÞT ðOþ FÞ�1ðhðxÞ � y0Þ
þ ðx� xbÞTB�1ðx� xbÞ; ð3Þ

[e.g., Jazwinski, 1970] where y0 is the observation vector, h
is the observation operator (nonlinear), xb is the background
information (for example a 6-hour forecast), O, F, and B are
the error covariance matrices of the observations, observa-
tion operator, and background, respectively. Hence h(x) is
an estimate of the observations that would be made with a
state of the atmosphere x.
[20] The minimum variance problem can be solved using

a quasi-Newton iteration, i.e.,

xiþ1 ¼ xb þ D
y
i y0 � h xið Þ þ Hi xi � xb

� �� �
; ð4Þ

[e.g., Rodgers, 1976] where the subscript i denotes the
iteration number, Hi is the tangent linear model of the ob-
servation operator h, or Jacobian, and Di

y is the contribution
function defined by

D
y
i ¼ HT

i R
�1Hi þ B�1

� ��1
HT

i R
�1 ð5Þ
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[Rodgers, 1976] where R = O + F. We define convergence as
the iteration at which the quantity J [xi] has changed by less
than 2% from the previous iteration, because further
iterations did not make appreciable changes in the analysis.
Healy and Eyre [2000] and Palmer et al. [2000] have found
that the cost function at convergence can be used to quality
control the GPS observations.
[21] After convergence, (4) represents a solution (the

analysis) that has an optimal position or distance with
respect to both the observations and the background pro-
vided that the background and observation errors are cor-
rect, unbiased, normally distributed, and uncorrelated with
respect to each other. Since these postulates may not always
be true, we may obtain a slightly suboptimal solution. A

bias estimate is one way to address the problem [Dee and da
Silva, 1998].
[22] Our state vector includes the temperature, the neg-

ative of the natural logarithm of the specific humidity at the
background pressure levels, and the sea-level pressure. In
the present implementation, the state vector extends to the
lowest perigee point of the occultation.

3.2. The GPS Observations

[23] During the GPS/MET mission, there were four time
periods when the Anti-Spoofing (A/S) encryption was
turned off by the United States Department of Defense
(USDoD). We used the same data set as [Kursinski et al.,
2000a], that is, ‘‘Prime Time 2’’ from 21 June to 4 July
1995. We chose this time period because the software then
on the receiver enabled tracking the occultations deeper in
the troposphere. Table 1 shows the percentage of occulta-
tions which probed the troposphere down to 5 km altitude or
less. This number is higher in dry regions such as the
Southern hemisphere (winter) than between 30�S and 30�N.
The GPS data used here were processed by the Jet Propul-
sion Laboratory [Hajj et al., 2002]. The locations of the 797
occultations of the data set are shown in Figure 2. No data
were used for 24 June to 26 June 1995 because of problems
with the GPS receiver.

Table 1. Percentage of Occultations Penetrating the Troposphere

Down to a Low Altitude in the GPS/MET 1995 June–July Dataa

Lowest Point North Tropics South

5 km or less 81 60 94
4 km or less 63 42 89
3 km or less 44 24 80
2 km or less 24 4 60
1 km or less 10 1 41

a ‘‘North’’ designates latitudes between 30�N and 90�N, ‘‘Tropics’’
30�S–30�N and ‘‘South’’ 30�S–90�S. Values are in %.

Figure 2. GPS/MET Occultations with no GPS encryption, June–July 1995. The chart is one map per
day and the dates are shown at the bottom of each map, with the number of occultations for the day in
parentheses. Different symbols are used for different synoptic periods.
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[24] We assumed the following errors in the refractivity
data: 1% below 5 km, 0.2% up to 30 km, based on the
estimates of Kursinski et al. [1995, 1997]. Above 30 km,
several sources of error, negligible in the troposphere,
become gradually more important as the refractivity becomes
very small [Kursinski et al., 1997]. Hocke [1997] identified
‘‘wave-like structures’’ in the upper stratosphere in GPS
retrieved temperatures. Since we cannot determine whether
these are real or result from errors in the observations, we
simply chose not to give weight to the GPS refractivity
observations above 30 km, by assigning a 50% error in
refractivity above that altitude in the present analysis.
[25] We incorporate inter-level observation error cova-

riances using a Gaussian-type decrease:

CovðNi;NjÞ ¼ sNi
sNj

exp �ðzi � zjÞ2

�Li�Lj

 !
; ð6Þ

where Cov(Ni, Nj) expresses the refractivity error covariance
between two levels i and j, sNi

is the refractivity standard
deviation for the refractivity observation Ni. The correlation
length �Li depends on the spacing of the two levels
surrounding the observation altitude zi:

�Li ¼
1

4
ziþ1 � zi�1ð Þ: ð7Þ

This formulation was derived empirically and enables the
observation error covariance matrix to remain positive
definite even when the observations are very close (500 m
vertical spacing or less).

3.3. The Observation Operator

[26] The observation operator converts temperature,
humidity, and pressure profiles into refractivity profiles
expressed as a function of altitude. It contains the physics
of the measurement and an appropriate space-time interpo-
lation. The background profile at the observation location is
obtained by interpolating bilinearly between the model grid
points. There is no temporal interpolation. It follows that (1)
computing refractivity and (2) mapping pressure levels onto
altimetric levels are the two main features of this operator.
The observation operator can be represented by

hðxÞ ¼ IðFðxÞÞ; ð8Þ

where F represents the application of equation (2) at each
background level, and I is the interpolation operation.
[27] Instead of performing the analysis on the levels of

the forecast, it is possible to work on more levels, for
example the levels of the observations. Such an approach
can yield analyzed profiles that account for the high
resolution features detected by the GPS that cannot be
represented by a relatively coarse analysis [Kursinski et
al., 2000a]. Because the profiles are to be assimilated in a
global Data Assimilation System (DAS) we chose to work
at the approximate vertical resolution of the DAS. More-
over, the computational cost of analyzing at model reso-
lution is smaller because there are less levels in the
background than in a typical GPS occultation (60–90
observation altitudes).

[28] There are two different ways of performing the
forward operation: (1) computing refractivity at each model
level, then interpolating the refractivity profile expressed in
pressure levels into a profile expressed in altimetric levels;
(2) interpolating model variables from each pressure level to
the altitudes of the GPS observations, then computing at
each point the refractivity value.
[29] Since calculating refractivity with interpolated values

for temperature and water vapor content (choice (2)) makes
the tangent linear model more complex, we chose to calculate
refractivity first and to interpolate it after (choice (1)).
[30] Refractivity values are computed for each model

level using equation (2). For each of these levels, the
altimetric altitudes are calculated using a hydrostatic inte-
gration. Assuming the altitude at the sea-level pressure is 0
meter, the refractivity values are interpolated logarithmi-
cally to the altitudes of the observations.

3.4. Linearized Version of the Observation Operator

[31] In (4) we must have an observation operator h and its
Jacobian H, the partial derivatives of the observation
operator with respect to the elements of the state vector.
We derived an analytical formulation for H. As a check, it
was compared with a computation by finite differences as in
the work of Eyre et al. [1993].
[32] The refractivity at one level is sensitive to a variation

in temperature and humidity at that level and under that
level. This is the result of the altitude calculation using
hydrostatic integration starting from the surface. A change
in the state vector at a given altitude has no influence on
the simulated refractivities located below, but influences the
altitudes of the pressure levels above, and hence the
refractivity. Figure 3 shows a few columns of the H matrix.
[33] A positive perturbation in temperature corresponds to

a decrease in refractivity at the same level. It has no
influence on the calculated refractivities at lower altitudes.
The value of the refractivity at each pressure level located
above does not change. However, due to the increase in
temperature and hydrostatic integration, all the pressure
levels above are moved to higher altitudes. This shifts the
upper part of the refractivity profile to higher altitudes, and
increases refractivity for a given altitude.
[34] Increasing humidity increases the local refractivity

(the plot is for �ln(q)). This has very slight influence on
other levels through the hydrostatic integration.
[35] The sea-level pressure has no direct influence on the

refractivity values of each model pressure level. However, it
increases the pressure difference between each model level
and the sea level, which is the equivalent to increasing the
altitudes. The final effect of a positive perturbation in sea-
level pressure is hence to increase refractivity for a given
altitude.

4. Model Comparison and Selection of the
Background

[36] We define the innovation here as the difference
between the refractivity calculated from the background
minus the observed GPS refractivity. Since refractivity
values span several orders of magnitude, we characterize
the innovation in terms of percent of observed refractivity.
We first calculate the refractivity innovations using different
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backgrounds. These refractivity differences, or innovations,
are shown in Figure 4.
[37] The first background (GEOS) was from the 1995

DAO DAS. We also use two backgrounds from the DAO’s
next-generation finite volume DAS; one background assim-
ilates NESDIS TOVS temperature retrievals, whereas the
other (DAOTOVS) uses radiances via a 1DVAR approach.
The horizontal resolution is the same for the three back-
grounds (2 � 2.5 degrees).

4.1. GEOS Background: Forecast and Assimilation

4.1.1. GEOS System Characteristics
[38] We first used background information from the

Goddard Earth Observing System (GEOS) Data Assimila-
tion System (DAS) version 1+ for our analysis [Takacs et
al., 1994; Schubert et al., 1995]. It included more upper
stratospheric levels than the GEOS-1 DAS used for a 15-
year reanalysis. Since the 6-hour forecast was only
archived on 18 selected pressure levels (surface to 0.4
hPa), we used a product called the ‘‘assimilation’’ for the
background. The assimilation is available on the 46 s
levels of the General Circulation Model (GCM) from the
surface to 0.1 hPa.
[39] The Data Assimilation Office (DAO) GEOS-DAS

version 1 uses an Incremental Analysis Update approach
[Bloom et al., 1996] in an Optimal Interpolation frame-
work [Pfaendtner et al., 1995]. It consists of applying
gradual analysis increments to the model integration within
the 6-hour assimilation window. The ‘‘assimilation’’ is the

result of this operation in the middle of the window. So this
second set of background information already contained
some information from the observations available during
the assimilation period, especially radiosondes (RS).
[40] A first study showed that the 1DVAR retrievals are

sensitive to the number of levels used for the analysis. The
limited number of levels for the GEOS Forecast (only 18
levels) is insufficient in order to capture the full structures that
a 1DVAR could resolve with 46 levels, especially near the
tropopause [Poli et al., 2001]. We show here the innovations
using the GEOS Assimilation as the background.
4.1.2. Comparison With GPS/MET Refractivity
[41] In the North (average of all profiles at latitude above

30�N), we can see from Figure 4a that the GEOS back-
ground refractivity presents a positive bias with respect to
the GPS/MET refractivity, except between 7 and 10 km.
The standard deviation of innovation in Figure 4d decreases
from about 3% around 2 km altitude down to less than 1%
between 7 and 30 km altitude. Below 5 km, the innovation
standard deviation grows significantly, indicating contribu-
tions from some combination of (1) errors in the back-
ground information, (2) errors in the measurements, and (3)
observation operator errors including phenomena such as
multipath that are not simulated correctly.
[42] In the Tropics, we can identify similar features: The

mean innovation (Figure 4b) between 1 and 30 km altitude
is positive except between 12 and 17 km. The standard
deviation in Figure 4e grows more rapidly than in the
North when approaching the surface: 3% at 5 km altitude
instead of 2% in the North at the same altitude, maximum
of 5.3% at 2 km altitude (note only 12 comparisons for
this altitude).
[43] In the South, the innovation bias in Figure 4c is

similar to the North, i.e., positive up to 8 km altitude and
then negative up to 12 km altitude. However, the bias
becomes negative again above 25 km altitude. The standard
deviations (Figure 4f ) are higher than in North above 8 km
altitude. This suggests that the GEOS Assimilation is more
accurate at these altitudes in the North where it is more
constrained by RS than in the South. Below 8 km, the lower
standard deviation in the South is perhaps related to the
humidity. Since the GPS/MET measurements are in the
boreal Summer, the winter Southern hemisphere has a lower
mean specific humidity. This implies that the humidity
contributes more to the refractivity observations in the North
than in the South. And since the temperature forecasts are
generally better in the North than in the South, this suggests
humidity as a source of difference.

4.2. FVDAS Background: 6-Hour Forecasts After
Assimilation of NESDIS TOVS

4.2.1. FVDAS NESDIS TOVS System Characteristics
[44] The Finite-Volume DAS (FVDAS) [DAO, 2000]

uses a global three-dimensional Physical-space Statistical
Analysis System (PSAS) assimilation scheme [Cohn et al.,
1998] and the NASA/NCAR (National Aeronautics and
Space Administration/National Center for Atmospheric
Research) Finite Volume General Circulation Model
(GCM). The GCM has 55 levels between the surface and
0.01 hPa. One significant feature of the FVDAS resides in
the dynamical core of the GCM which uses a Lagrangian
vertical coordinate system [Lin, 1997]. To initialize the

Figure 3. Jacobian for the GPS 1DVAR. The curves show
derivatives of the observation operator with respect to
temperature at 607 and 94 hPa, humidity at 303 hPa, and
sea-level pressure. The observation operator simulates
refractivity for an occultation which occurred on 29 June
1995 at 0218 GMT, located at 7�N and 128�E. No
refractivity observations were simulated below 3.7 km
altitude for this occultation because no data were reported.
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model we used Atmospheric Model Intercomparison Project
(AMIP) climatological ‘‘cold’’ runs, with a spin-up of
3 weeks by assimilation of the observations (mainly RS
and TOVS) before the beginning of the time period for
which we had GPS/MET data. The FVDAS background
information used in this study is interpolated to the same 46
s levels as the GEOS Assimilation.
[45] One important source of observations for the DAS

comes from the TIROS Operational Vertical Sounder
(TOVS) soundings. The National Oceanic and Atmospheric
Administration (NOAA) National Environmental Satellite,
Data, and Information Service (NESDIS) provides opera-
tional profiles of retrieved temperature. These profiles are
obtained via a retrieval method using a radiosonde-based

background rather than a short-term GCM forecast [Reale et
al., 1994]. We refer to the 6-hour forecasts issued by this
system as ‘‘FVDAS NESDIS TOVS’’ hereafter.
4.2.2. Comparison With GPS/MET Refractivity
[46] From Figure 4a, we can see that in the North the

FVDAS NESDIS TOVS background refractivity bias has
about the same shape as the GEOS Assimilation. The
negative region has been shifted upwards (8–12 km instead
of 7–10 km). Also, the bias curve looks smoother than the
GEOS, i.e., less wave structures between 15 and 25 km
altitude. A significant difference resides in the standard
deviation shown in Figure 4d. It has been decreased by an
amount of up to about 1% below 6 km altitude when
compared with the GEOS Assimilation.

Figure 4. Refractivity differences with GPS/MET observed refractivity for three different backgrounds
and the GPS 1DVAR analysis. All quantities in percents of observed refractivity. Number of profiles:
277/274/223 for North/Tropics/South, respectively.
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[47] In the Tropics, the bias in Figure 4b has been shifted
toward more negative values, thus making the average
innovations over the profile closer to zero.
[48] Bias and standard deviation results in the South are

very similar to the GEOS Assimilation results in Figures 4c
and 4f.

4.3. FVDAS Background: 6-Hour Forecasts After
Assimilation of DAOTOVS

4.3.1. Differences Between NESDIS TOVS and
DAOTOVS
[49] The ‘‘FVDAS DAOTOVS’’ background assimilates

TOVS observations in the FVDAS via the assimilation of
DAOTOVS temperature and humidity interactive retrievals,
instead of the assimilation of NESDIS temperature retriev-
als. The DAOTOVS system relies on a 1DVAR cloud-
clearing embedded in the assimilation cycle. It uses the
latest available 6-hour forecast as a background to initiate
the 1DVAR retrievals and includes a Kalman-filtered radi-
ance bias correction based on RS [Joiner and Rokke, 2000].
4.3.2. Comparison With GPS/MET Refractivity
[50] In the North the FVDAS DAOTOVS innovation bias

shown in Figure 4a does not exhibit significant negative
values in contrast to the other two backgrounds. The
crescent shape of the curve is conserved, though, but with
reduced waviness between 15 and 25 km altitude. The
standard deviation in Figure 4d is smaller than the GEOS
Assimilation and FVDAS NESDIS TOVS above 3 km
altitude. One explanation for this reduction in standard
deviation could be that some phenomena observed by the
GPS have been captured by the FVDAS DAOTOVS 6-hour
forecast, but not by the two other backgrounds.
[51] A major difference is observed in the Tropics, where

the innovation bias in Figure 4b is now confined between
�0.5% and 1% above 5 km altitude, whereas before these
extrema were �1% and 2% for the other two backgrounds.
This significant reduction of bias, associated with no real
change in standard deviation in Figure 4e, is another
indication of the improvement of the system from NESDIS
TOVS to DAOTOVS. It is interesting to notice that a
change in the origin of the TOVS data can drastically
change the innovation bias curve. This change is not
detected in the North, but is much more striking in the
Tropics where fewer RS are available to constrain the
climatology of the model-analysis.
[52] We also observe a major difference in the South.

The innovation bias in Figure 4c has been significantly
reduced as compared with FVDAS NESDIS TOVS and
GEOS Assimilation. The climatology of the model-analy-
sis, that we can examine using an independent refractivity
data set (GPS/MET), has changed dramatically: The bias
has generally been reduced, assuming the GPS/MET
observations are nonbiased. As in the Tropics, this shows
that the TOVS data strongly drive the model-analysis
climatology in the Southern hemisphere where only very
few RS observations are available. However, in contrast to
the general results, the standard deviations in the South in
Figure 4f have slightly increased above 8 km altitude
compared to the FVDAS NESDIS TOVS. We are cur-
rently investigating the source of this result. It might be
due to an insufficient spin-up of the FVDAS DAOTOVS
system.

4.4. Selection of the Background

[53] To summarize, smaller refractivity innovations are
observed with the FVDAS DAOTOVS than the other back-
grounds in the North and the Tropics. We therefore use the
FVDAS DAOTOVS background in the rest of the paper.
[54] As an independent check, a comparison of the temper-

ature profiles from the three backgrounds with nearby RS
yielded the same result: The GEOSAssimilation and FVDAS
NESDIS TOVS have comparable climatologies (assuming
those are measured by the bias), the FVDAS DAOTOVS has
smaller biases globally and reduced standard deviations in
the North [Poli et al., 2001]. The agreement between the two
studies suggests that GPS refractivity can be used as an
independent data set for model validation studies.

4.5. Background Error Covariance Matrix

[55] The background error covariance matrix uses varian-
ces derived by comparison of the FVDAS DAOTOVS 6-
hour forecasts with nearby radiosondes. For temperature,
the covariances includes inter-level correlations through the
following formula:

CovðTi; TjÞ ¼ sTisTj exp � lnðPi=PjÞ
�L

� 	2
 !

exp � Ti � Tj

�T

� 	2
 !

;

ð9Þ

where Cov(Ti, Tj) expresses the temperature error covariance
between two levels i and j, sTi is the temperature error
standard deviation for the pressure level Pi, Ti is the
temperature at that level, �L = 0.1, and �T = 3 K are
constants which were experimentally adjusted. Using this
formulation, two levels close in natural logarithm of pressure
and temperature have highly correlated errors. In order to
account for the variable altitude of the tropopause, we
specify the local maximum of model error to occur at the
altitude of the temperature minimum. Figure 5 shows the
square root of the diagonal of the background error
covariance matrix for temperature.
[56] For humidity, we assumed errors shown in Table 2.

Those errors were derived in the same manner as the
assumed background temperature errors. For the humidity
inter-level correlation error only the term representing the
exponential decrease related to the vertical distance between
two levels in (9) is taken into account.

[57] We assume a sea-level pressure error standard devia-
tion of 2.5 hPa. We neglect cross-correlations between the
different variable types in the background (temperature,
humidity, and sea-level pressure).

5. Comparisons With Radiosondes

[58] In this section we compare results of GPS 1DVAR
analyses with nearby radiosondes (RS), and discuss the
statistics obtained.

5.1. Radiosonde Matches

[59] The matching criteria are ±3 hours in time and less
than 280 km in distance. The GPS temperature (humidity)
direct retrievals obtained using an estimate of humidity
(temperature) [Hajj et al., 2002] are also shown, as well
as the background used to perform the 1DVAR analysis.
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[60] Among the 797 GPS occultations, 102 match the
collocation criteria in the North (31 and 10 in the Tropics and
the South, respectively). Since most of the matches occur in
the Northern hemisphere, we will focus on this region. Only
one 1DVAR minimization process did not converge. As a
background check, collocations with discrepancies more
than 5 K between background and RS are removed from
the statistics. Typical RS temperature errors range from 0.5
K to about 1 K in the troposphere and increase to as large as
4 K at 10 hPa [Rocken et al., 1997]. It is also necessary to
apply some quality control to the GPS direct retrievals.
Therefore, we also remove discrepancies more than 5 K
between the RS and the GPS direct retrieval. No quality
control is performed on the 1DVAR analyses. Likewise, all
specific humidity differences (background minus RS or RS
minus direct retrieval) greater than 100% are removed.

5.2. Temperature

[61] Figure 6 shows a single temperature profile which
exhibits the advantages of combining information from a

Table 2. Assumed Natural Logarithm of Specific Humidity Errors

for the Background

Pressure, hPa Ln(q) SD

Less than 150 0.70
200 0.60
250 0.45
300 0.44
400 0.42
500 0.40
700 0.32
850 0.25
1000 0.20

Figure 5. Assumed background temperature errors.
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background and observations. (1) Both the direct retrieval
and 1DVAR analysis are able to improve the tropopause as
compared with the FVDAS DAOTOVS 6-hour forecast
background. The background has a warm bias at the
tropopause of about 5 K. (2) In the lowest layers, the
1DVAR analysis follows the background, whereas the direct
retrieval diverges from the RS.
[62] Figure 7 shows the bias and standard deviation

difference from nearby radiosondes for temperature in the
Northern hemisphere (North of 30�N) and the number of
data used to calculate each point. That number decreases
toward the surface because many occultations during this
time period did not reach the surface as shown in Table 1.
Balloon bursts above the tropopause explain the decreasing
number of comparisons in the stratosphere.

[63] All biases in Figure 7a (background minus RS, GPS
1DVAR analysis minus RS, direct retrieval minus RS) are of
the order of 1 K or less below the 40-hPa level. The forecast
and 1DVAR analysis have biases less than 0.5 K between
300 and 20 hPa. The direct retrieval presents a larger
(negative) bias than the GPS 1DVAR analysis above the
400-hPa level. Above 100 hPa, the negative bias of the
direct retrieval is consistent with the results of Leroy [1997]
for the same time period (Summer 1995). He observed a
negative bias in the geopotential height derived from GPS
as compared to ECMWF forecasts, which are tightly con-
strained by radiosondes in the Northern hemisphere.
[64] The direct retrievals minus RS produce the largest

standard deviations in Figure 7b below 400 and 850 hPa
(2.4 K at 850 hPa). The FVDAS DAOTOVS minus RS

Figure 6. Temperature profile showing the advantages of using a variational approach with GPS data.
See text for explanation of regions (1) and (2).
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temperature standard deviations are less than 2 K between
700 and 20 hPa. The improvement of the 1DVAR analysis
between 925 and 20 hPa (except at 500 and 50 hPa) over the
background (by comparison with the nearby RS) suggests a
better description of the tropospheric and lower strato-
spheric temperatures.

5.3. Humidity

[65] Figure 8a shows humidity bias with respect to nearby
RS for the global domain. The FVDAS DAOTOVS 6-hour
forecast background presents a bias less than 5.5% over the
entire vertical range of the profile. The direct retrieval has a
comparable bias in the 850- to 750- and 600- to 400-hPa
regions. The 1DVAR bias is the largest (negative), except at
925 and 650 hPa. Kursinski and Hajj [2001] also found a

negative bias in their humidity retrievals from GPS/MET
refractivity.
[66] Figure 8b shows that the FVDAS DAOTOVS is the

closest to the RS point measurements in terms of standard
deviation between 850 and 700 hPa, with an increase from
30% at 925 hPa to about 45% at 450 hPa. The direct
retrieval presents the largest standard deviation, except at
925 hPa. The 1DVAR standard deviation is the smallest in
the 550- to 400-hPa region. However, the 1DVAR shows a
slight degradation compared to the background below the
700-hPa level.
[67] Many radiosondes we used either did not report the

humidity, or the reported humidity was different from the
background and/or the direct retrieval by more than 100%.
This results in a small number of comparisons. There are

Figure 7. Northern Hemisphere, comparisons with radiosondes temperatures (± 3 hours, less than 280
km).
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known problems with RS humidity measurements [e.g.,
Soden and Lanzante, 1996]. It is also known that humidity
varies more over smaller scales than does temperature. In
addition, the GPS observations average the refractivity over
a long horizontal path whereas RS are more like point
measurements. Clearly, the representativeness problem
which arises from the humidity comparison performed here
needs to be addressed in the future. We will discuss the
humidity results in more detail later in the paper.

5.4. Sea-Level Pressure

[68] The sea-level pressure (SLP) is part of the state
vector in the 1DVAR analysis. Table 3 shows that in the
North and in the Tropics the 1DVAR analysis SLP has both
higher bias and standard deviation than the background,
when compared with RS. On the one hand, the SLP incre-

ments (i.e., 1DVAR analysis minus background) are needed
to fit the background to the observed refractivity. Without
these increments, investigations have shown that the adjust-
ment occurs in temperature, and the comparisons with the
RS are degraded [Poli et al., 2001]. But on the other hand,
we can see from the Table 3 that these SLP increments do
not agree with the SLP reported by RS.
[69] We discuss the origin of these SLP increments and

the implications for the use of SLP derived from GPS radio
occultations into NWP in the next section.

6. 1DVAR Interpretation of the Refractivity:
The Increments

[70] In order to gain some insight into the way the
1DVAR creates increments in temperature, humidity and

Figure 8. Comparisons with radiosondes (RS) humidity, average for the whole domain North/Tropics/
South.

ACL 14 - 12 POLI ET AL.: 1DVAR WITH GPS R.O. REFRACTIVITY



sea-level pressure, we now discuss how the minimization of
refractivity differences between the background and the
observations performed by the 1DVAR relates to the anal-
ysis increments.

6.1. Residuals

[71] The residual is defined here as the difference
between the 1DVAR refractivity and the GPS observations.
The curve ‘‘1DVAR analysis’’ in Figure 4 shows these
residuals. As expected, the 1DVAR has succeeded in push-
ing the solution refractivity much closer to the GPS/MET
observation than the background refractivity (curve
‘‘FVDAS DAOTOVS’’). However, in the 1DVAR theory,
we assume that both observations and the background errors
are Gaussian and not biased. Figures 4a, 4b, and 4c show
that these assumptions are not met, i.e., there are biases. An
interesting point is that the 1DVAR removed some of the
bias: The bias of the 1DVAR refractivity residual is close to
zero. However, if we look carefully, bias remains in the
residuals. This is most apparent near the surface in the
Tropics where the background bias was the strongest. For
example, a separate bias correction such as discussed and
presented by Dee and Todling [2000] is necessary to fully
account for these biases.
[72] The refractivity differences in Figure 4e were

reduced to 1% in standard deviation in the Tropics, which
is consistent with the 1% refractivity error assumed below
5 km altitude. However, in the Northern and Southern
hemispheres in Figures 4d and 4f, refractivity residuals
below 5 km altitude are approximately 0.4–0.6% which is
smaller than the errors assumed. Errors in the residuals
combine errors from both the analysis and the measure-
ment. They hence represent an upper limit on the real
value of the measurement error. Consequently, the low
values in residual standard deviation suggest the 1%
refractivity error estimates of Kursinski et al. [1995,
1997] may be too large in those regions.
[73] In the present attempt to estimate the refractivity

errors characteristics from the residuals for further assim-
ilation studies, we now consider the refractivity residuals
vertical correlations. They are shown in Figure 9. The figure
also shows the innovation vertical correlations (curve
‘‘Background’’). Those correlations are broader than the
residuals vertical correlations (curve ‘‘1DVAR analysis’’).
The former include error structures from the background
and we cannot separate the background error vertical
structures and the GPS intrinsic error structures. The resid-
uals represent a closer representation of the GPS vertical
structures, even though they have of course retained some
memory of the background error.
[74] The vertical correlations in the 1DVAR results are

closer to exponential decays than the Gaussian decays

assumed in the construction of the observation error
covariance matrix. A least squares statistical fit showed
that those correlations functions had correlation lengths
between 1 and 3 km, while the background refractivity
errors have larger vertical correlations lengths between 2
and 7 km in the North and in the Tropics, and between 8
and 12 km in the South. Changing the correlations in the
observation error covariance to values similar to the ones
found here did not change significantly the results shown
in the paper.

6.2. Sea-Level Pressure Increments

[75] We begin with the sea-level pressure (SLP) since it is
the most straightforward to interpret. A SLP shift is some-
what equivalent to a height shift, which itself translates into
a fractional refractivity shift: We can approximate the
refractivity as varying with a constant scale height H, i.e.

N ¼ N0 exp
� z

H : ð10Þ

Then the fractional variation in refractivity at any altitude
due to a given height shift �z is approximately

�N

N
� ��z

H
: ð11Þ

[76] From (11) we can predict qualitatively how the
1DVAR analysis modifies the background sea-level pres-
sure, given an observed and a background refractivity
profile. In the North, Figure 4a shows that the background
refractivity is higher in the mean than the observations. This
is seen by integrating the area between the zero-mean
vertical axis and the innovation curve (FVDAS DAOTOVS
background minus observation). To correct for this positive
background minus observation refractivity mean difference
in the North, the 1DVAR analysis creates a negative mean
SLP increment in this region, which is consistent with the
result of Table 3. Likewise, the mean SLP increment is
negative in the Tropics, but with a greater SLP mean
increment (�3.1 hPa instead of �1.3 hPa in the North)
corresponding to a greater area between the zero-mean
vertical axis and the innovation curve for this geographical
area in Figure 4b.
[77] Visually, Figure 10 shows the transition, in the North,

from the ‘‘FVDAS DAOTOVS’’ mean curve, representing
refractivity residual calculated with the background SLP, to
the ‘‘1DVAR SLP’’ mean curve, representing background
refractivity calculated with the 1DVAR SLP. As expected,
we can see that the 1DVAR SLP mean curve in Figure 10a
has been shifted toward more negative values, thus making
the integrated area between it and the zero-mean axis now
closer to zero. Consequently, the negative refractivity bias
observed previously between 7 and 10 km is even more
negative.
[78] Figure 10b shows a reduction in standard deviation

when going from the residual to the 1DVAR SLP curve.
This suggests that valuable information in terms of height
shift between the background and the GPS observations
may be contained in the GPS refractivity measurements. It
is not completely clear though whether this height shift
relates to the first order to an incorrect sea-level pressure in
the background or if it is primarily due to other sources of

Table 3. Sea-Level Pressure Statistics for Profiles With Nearby

RS

Geographic Area North
(102 Cases)

Tropics
(31 Cases)

Sea-level pressure, hPa Mean SD Mean SD

Background minus RS 0.0 2.6 �0.7 1.4
1DVAR analysis minus RS �1.3 4.9 �3.8 3.6
Increment �1.3 4.1 �3.1 3.5
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error that could be contained either in the measurements or
in the observation operator.
[79] Palmer and Barnett [2001] developed an optimal

estimation inverse method based on ECMWF background
and GPS/MET bending angles and found consistent results,
i.e., negative surface pressure increments on a global
average. However, they found positive increments in the
Tropics. A possible explanation for this difference might be
the number of points used to compute the statistics in the
Tropics (9 instead of 31 in the present paper).
[80] It is indeed possible that a discrepancy exists

between the references used in the processing of the
GPS data and the reference used in the model used as a
background (i.e., different geoids). Also, another source of
difference might be the spherical symmetry assumption

made when deriving the impact parameter (and thus the
altitude) of the tangent points from the bending angle
measurements.
[81] In any case, these discrepancies require further

attention before using surface or sea-level pressures derived
from GPS radio occultation in a weather and/or climate
model.

6.3. Temperature Increments

[82] Figure 11 shows the 1DVAR temperature increments
as a function of pressure and altitude. The right axis
(altitude) in Figure 11b is based on the US Standard
Atmosphere 1976 [NOAA, 1976]. The largest mean incre-
ments in Figure 11a are in the upper troposphere near the
tropopause in the [30�S–30�N] region. The mean temper-

Figure 9. Vertical correlations at various altitudes, for all the refractivity profiles.
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ature increments are less than 0.6 K (0.9 K) in the North
region ([30�S–30�N], respectively). They exhibit a dipole
behavior: They are usually positive below the region 400–
300 hPa, and negative above. Below the 400-hPa level, the
positive increments in the North are consistent with the
negative temperature bias in the FVDAS background in
the same region, based on the RS comparisons shown
previously. The usually negative increments in the upper
troposphere and lower stratosphere are consistent with the
findings of Palmer and Barnett [2001]. They suggest that
the background is too warm in this region, especially in the
latitudes [30�S, 30�N].
[83] We now examine the temperature increment contri-

bution to the transition from innovation to residual. Tem-
perature has two effects on the refractivity: a local effect

(see equation (2)) and a nonlocal hydrostatic effect.
Including increments in an isolated part of the temperature
profile enables us to gauge the influence of the hydrostatic
effect in fitting the observations. The ‘‘1DVAR T & SLP’’
curve (noted 1DVAR T_SLP in the rest of the paper) in
Figure 10 uses 1DVAR SLP and 1DVAR temperatures
from the surface to the 150-hPa level (about 14 km
altitude). No temperature increments are used to generate
this curve above 14 km altitude. We now examine the
difference between the 1DVAR SLP curve and the 1DVAR
T_SLP curve and attempt to relate this transition to the
1DVAR temperature increments in Figure 11.
[84] Below 6 km altitude, the positive mean temperature

increments in Figure 11a help slightly reduce in the same
region the positive innovation bias in Figure 10a between

Figure 10. Refractivity differences with observations for various combinations of simulated refractivity.
See text for the details of each curve.
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the 1DVAR SLP and 1DVAR T_SLP mean curves. We also
observe a small reduction of standard deviation innovation
in Figure 10b at the same altitudes. Between 6 and 14 km,
the 1DVAR T_SLP standard deviation is significantly lower
than the 1DVAR SLP.
[85] Above the cutoff altitude at about 14 km, we should

not see any local temperature effect provided the temper-
ature has not changed from the background, but we do see
the hydrostatic effect of the negative temperature increments
applied below the cutoff. The increments have compressed
the atmosphere between 6 and 14 km, thus lowering the
atmosphere located above. As a consequence, the mean
refractivity difference with the observations has been
reduced in Figure 10a. We note that this hydrostatic adjust-
ment to the refractivity above 14 km is close in magnitude

to the modifications due to the SLP change. This suggests
that a temperature bias in the background might cause the
1DVAR to erroneously change the SLP instead of produc-
ing a larger increment in temperature.
[86] In order to bring the remaining refractivity differ-

ences in the 1DVAR T_SLP curve closer to a zero mean
above 14 km altitude in Figure 10a, the 1DVAR has
generally created negative temperature increments. The
1DVAR T_SLP curve is transformed into the ‘‘GPS
1DVAR’’ curve above 14 km altitude by applying in this
region the temperature increments.

6.4. Humidity Increments

[87] With the SLP and the temperature modified, we now
examine how the humidity increments contribute to the

Figure 11. GPS 1DVAR analysis minus FVDAS DAOTOVS background temperature (increments).
The number of profiles for each geographic area (North, Tropics, South) is shown in parentheses in the
legend.
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reduction of the innovation. We are interested in the
transition below 10 km altitude from the 1DVAR T_SLP
curve to the 1DVAR curve representing the residual (i.e.,
1DVAR minus observation). In terms of bias, the largest
differences between these two curves are located between
the surface and 7–8 km altitude in Figure 10a. The 1DVAR
T_SLP mean curve is positive in this region. Humidity has a
local effect on refractivity as shown in equation (2). Con-
trary to temperature, the hydrostatic effect due to the
replacement of dry air by lighter water vapor can be
neglected in the present interpretation.
[88] The information content of the refractivity below

8–9 km altitude as constrained by the specified background
error estimates is dominated by the water vapor information.
The small temperature increments below 6 km do not
reduce significantly the mean innovation in this region.
Consequently, the 1DVAR should create negative humidity
increments to compensate for the remaining positive differ-
ence in the 1DVAR T_SLP mean curve.
[89] Table 4 shows these increments in percent of the

average of background and 1DVAR specific humidity. They
agree with the postulation of the previous paragraph, i.e.,
negative mean humidity increments.
[90] We also see from Table 4 that the standard devia-

tions of the humidity increments represent a significant
portion of the assumed background uncertainties shown in
Table 2. These somewhat large humidity increments are
necessary to transform the 1DVAR T_SLP standard devia-
tion curve in Figure 10b into the 1DVAR curve below 10 km
altitude.
[91] We now discuss further the 1DVAR humidity

comparisons with RS shown in Figure 8. Considering that
the RS and the GPS refractivity represent in essence
different averages, it is somewhat more difficult to dem-
onstrate an impact of the GPS refractivity on the compar-
ison between a humidity retrieved from a line averaged
measurement and a point measured humidity. For the
temperature, we have seen that this was not a problem,
provided we showed that the 1DVAR temperatures were
generally closer to the RS than the background. One
possible explanation is the spatial variability of temper-
ature, which is known to be in general less fine than that
of humidity. Also, the intrinsically stronger variability of
humidity would require a somewhat larger number of
comparisons than temperature in order for the comparison
to be as much representative as the comparisons involving
temperature, whereas here we are in fact confronted with
the opposite situation, i.e., a smaller number of available
comparisons for the humidity than for the temperature,
because of the highly variable quality of the RS humid-
ities. More GPS data are required in order to establish a
firm conclusion on the impact of GPS refractivity on the
analysis of humidity. However, we have demonstrated that
substantial increments have been made in the moisture

fields after analysis of refractivity, and a small reduction in
the 1DVAR minus RS standard deviation (as compared to
background minus RS) has been showed at 700–400 hPa,
although some degradation was observed below the 700-
hPa level.
[92] To summarize how the increments are created in the

present 1DVAR, we can state that (1) the humidity incre-
ments are dominant below 8–9 km (2) the SLP affects all
altitudes significantly (3) temperature at and below the
tropopause significantly affects the stratospheric residual.
In this simplistic scheme, (1) is a local effect, whereas (2)
and (3) correspond to a hydrostatic effect.

7. Conclusions and Future Directions

[93] In this paper, we discussed our implementation and
assessment of a 1DVAR analysis of refractivity. Concep-
tually, the approach adjusts a background such that the
refractivity of the solution matches the GPS observed
refractivity, consistently with the background and the obser-
vational uncertainties.
[94] We compared GPS/MET refractivity data acquired

in June–July 1995 with three backgrounds: 1995 GEOS
Assimilation, and two versions of the next-generation
FVDAS assimilation system. The first version of the
FVDAS used the TOVS temperature retrievals produced
by NESDIS, the second (FVDAS DAOTOVS) used inter-
actively derived temperature and humidity retrievals from
the TOVS radiances within the FVDAS. We examined and
characterized the refractivity differences between these
backgrounds and the GPS observations in terms of their
mean and standard deviation. The standard deviations
above the 300-hPa level are largest in the Southern Hemi-
sphere reflecting the lack of radiosondes there and the
heavy reliance on the forecast model in defining the
vertical structure of the atmosphere. At lower altitudes,
the standard deviations are much larger in the tropics and
Northern hemisphere reflecting the much larger moisture
concentrations in the warmer regions of the atmosphere.
The utility of the GPS refractivity data as an independent
benchmark data set for model validation studies is apparent
in our results. The ‘‘best’’ expected of the three back-
grounds (FVDAS DAOTOVS) exhibited the smallest mean
discrepancies relative to GPS radio occultation observa-
tions. Furthermore, the agreement between the GPS and
background results was noticeably worse in the radio-
sonde-sparse Southern Hemisphere. We used the FVDAS
DAOTOVS forecasts as the background for the rest of our
work.
[95] We applied the 1DVAR analysis method to GPS/

MET summer 1995 refractivity data. We showed that, as
expected, the 1DVAR refractivity profiles were much closer
to the observed refractivity structure than the original back-
ground. In the Northern and Southern Hemispheres, we
found that below 5 km altitude, discrepancies between the
1DVAR and GPS refractivity profiles were generally 0.4–
0.6%. This suggests that the magnitude of the observational
refractivity errors below 5 km altitude were smaller than the
assumed observational errors developed by Kursinski et al.
[1995, 1997] and used in our study.
[96] We discussed how the 1DVAR process uses dis-

crepancies in the background minus observed refractivity

Table 4. Specific Humidity Increments in the North

Pressure Level, hPa Mean, % SD, % Number of Cases

400 �3 28 261
500 �12 30 251
600 �10 28 221
700 �10 23 150
850 hPa �6 17 60
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to adjust the background temperature, water vapor and sea-
level pressure. The dependence of refractivity on these
variables is both local and nonlocal depending on the
variable. The dependence on water vapor content is
essentially local. Therefore the 1DVAR makes local adjust-
ments to moisture to reduce background versus observa-
tion refractivity discrepancies in the warmer, moist lower
troposphere. The dependence of refractivity on sea-level
pressure is quite nonlocal. Sea-level pressure adjustments
are made when the vertical average of the discrepancies
for a refractivity profile is significant. The 1DVAR reduces
this average discrepancy by adjusting the entire atmos-
pheric mass in the column by increasing or decreasing the
sea-level pressure. The dependence of refractivity on
temperature is both local and nonlocal. First, density and
therefore refractivity depend inversely on local temper-
ature, i.e., an increase in temperature will cause a local
decrease in density and refractivity. Second, temperature
has a nonlocal hydrostatic effect such that an increase in
the analyzed temperature expands the atmosphere and
increases the density and refractivity at higher altitudes.
Therefore the 1DVAR will make local adjustments to
temperature as well as temperature adjustments at lower
altitudes to reduce density versus height discrepancies at
higher altitudes.
[97] One of the potential strengths of GPS occultation

observations is the ability to recover the geopotential
height of pressure surfaces independent from radiosondes
because unlike most passive observations, the independent
coordinate is altitude (rather than pressure). With this
expectation, the initial 1DVAR sea-level pressure adjust-
ments found here were disappointing, although somewhat
enlightening. The GPS/MET refractivity data caused the
1DVAR sea-level pressures to systematically decrease to
values which are very unlikely to be correct based on
comparisons with nearby radiosondes. The shift magni-
tudes were largest in the tropics (�2.6 hPa) and smallest in
the Southern Hemisphere. The cause of these sea-level
pressure biases turned out to be a subtle but significant
bias between the observed vertical mean refractivity and
that of the background. This bias is not unique to the
background used here but has also been observed for
ECMWF, UKMO, and NCEP refractivities as noted by
Kursinski et al. [1996, 2000a], Leroy [1997], Rocken et al.
[1997], and Kursinski and Hajj [2001].
[98] The 1DVAR temperature increments were signifi-

cant. The standard deviation of the temperature adjust-
ments in the Northern Hemisphere range from 0.4 K at 700
hPa and 0.8 K above 70 hPa to peak adjustments of �1.5
K at 200 hPa, approximately consistent with the vertical
shape and magnitude of the background temperature error
covariance. The standard deviations of Southern Hemi-
sphere temperature adjustments were 1.5 to 2 times larger,
reflecting how the background quality degrades in the
absence of radiosondes. The standard deviations of tropical
temperature adjustments were generally slightly larger than
1 K with a peak near 70 hPa consistent with the back-
ground error covariance.
[99] The 1DVAR produced a systematic, global adjust-

ment in the vertical temperature structure with temperatures
above the 300- to 400-hPa level being consistently shifted
colder (��0.5 K) while those at lower altitudes were

shifted warmer (�0.3 K). These systematic shifts were
made to reduce the refractivity bias between the background
and the GPS/MET observations.
[100] Comparisons with nearby radiosondes showed the

1DVAR temperatures presented an improvement over the
background temperatures. The standard deviations were
reduced throughout the 925- to 20-hPa interval by �0.2 K.
The temperature bias relative to the radiosondes was also
reduced with the exception of the 450- to 250-hPa interval
and at 850 hPa.
[101] A limited number of radiosonde comparisons

(�70) were made for the humidity, mostly in the Northern
Hemisphere. These comparisons showed that the 1DVAR
humidity presented a small dry bias, but larger than the
background humidity bias when compared to RS. The
1DVAR solutions were systematically drier than the back-
ground (amounting to �10% in the North) because GPS
refractivities are systematically lower than the background
in the lower troposphere.
[102] Significant moisture increments were made by the

1DVAR in the warmer regions of the troposphere, with
standard deviations ranging from 17% to 30% in the 850- to
400-hPa interval in the Northern Hemisphere. We showed
that these increments contributed significantly to the reduc-
tion of the background minus GPS observations refractivity
differences in the 1DVAR solutions below �10 km
altitude. Based on the theoretical investigations of Healy
and Eyre [2000] the 1DVAR humidity should have been
improved when compared to the background humidity.
Yet, the comparisons with RS showed that the 1DVAR
minus RS humidity difference standard deviations were
similar to the background minus RS humidity difference
standard deviations, with small improvements observed
between 550 and 400 hPa, and some degradation observed
between the 850- and 700-hPa levels. This discrepancy
suggests that some of our assumptions are not valid, for
example, incorrect background and/or observation error
covariance models and assumption of no bias in the
1DVAR theory.
[103] Even though there are assumptions made when

deriving refractivity from bending angles (i.e., local spher-
ical symmetry), we showed that in most cases GPS obser-
vations combined with a background in an accurate and
computationally efficient 1DVAR framework yields signifi-
cant improvement in terms of temperature. Mixed but
encouraging results were obtained in terms of humidity. It
is also worth noting that GPS will likely have larger impacts
in remote regions devoid of radiosondes. We can see
definite signs of this in the larger temperature increments
in the Southern Hemisphere. Unfortunately, the lack of
radiosondes in this region also means we cannot evaluate
the impact via a radiosonde comparison.
[104] Whatever its source, the refractivity bias is a

problem that must be confronted and solved for GPS
occultation data to achieve its full impact in data assim-
ilation and weather prediction. Finding the source of the
bias also represents a critical step in the evaluation of the
accuracy of the models, the GPS observations, and our
present understanding of the vertical structure of the
atmosphere.
[105] We have used in this study GPS/MET summer 1995

AS-off data, for which relatively few profiles probed to the
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surface. We were limited in our RS comparison by very few
radiosondes available in the Southern Hemisphere where
the GPS occultations probing deepest occurred. We look
forward to performing further investigations with new GPS
data probing deeper in the troposphere and to carry out data
assimilation experiments when more data are available.
Quality control will have to be developed before radio
occultation data can be routinely assimilated by data assim-
ilation systems. As an extension to this study, the 1DVAR
technique presented here can be improved to account for
horizontal drifts and line-of-sight averaging in the observa-
tion operator. Aspects of the viewing geometry for these
calculations were not provided in the GPS data set used here
and should be made available by the data producers.
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